Journal of Organometallic Chemistry, 82 (1974) C53—C55
© Elsevier Sequoia S.A., Lausanne — Printed in The Netherlands

Preliminary communication

NOVEL ARYL-BRIDGED TETRANUCLEAR GOLD—LITHIUM AND GOLD—COPPER CLUSTER COMPOUNDS R₄Au₇M₂ (M = Li OR Cu)

GERARD VAN KOTEN and JAN G. NOLTES

Institute for Organic Chemistry TNO, Utrecht (The Netherlands)
(Received October 18th, 1974)

Summary

Thermostable 2-Me_2 NCH₂-substituted phenylgoldlithium and goldcopper cluster compounds R_4 Au₂M₂ have been isolated and characterized.

As part of our investigations of the influence of built-in ligands on the structure of organometal IB compounds, we have prepared novel mixed Au_2Li_2 and Au_2Cu_2 cluster compounds.

Bis {2-[(dimethylamino)methyl]phenyl }goldlithium (III) has been synthesized via route 1* as well as via route 2.

White III, which is soluble in benzene and slightly soluble in ether, exists in benzene as a discrete dimer (by ebulliometry) and thus has R_4 Au₂ Li₂ stoichiometry. As compared with lithium dimethylbis(pyridine)aurate(I) [1] (stable below 0°) R_4 Au₂ Li₂ is thermally remarkably stable (slow dec. at 170°C; fast dec. at 202-204°).

The structure of the related $R_4Cu_2Li_2$ [2] and $R_4Ag_2Li_2$ [3] (R = 2-Me₂NCH₂-

Bis(2,6-dimethoxyphenyl)goldlithium (insoluble in hydrocarbon solvents; soluble in pyridine; 60% yield; dec. at 150°) has been prepared by the same method.

C₆H₄) compounds consists of a trans-M₂Li₂ core with 2e—3c bonded aryl groups^{*} The observation that the ¹³C and ¹H NMR** spectra of R₄Au₂Li₂ very closely resemble those of the corresponding copper and silver compounds indicates a similar structure for this compound, with digonal Au^I atoms (two electron-deficient Au-C bonds) and tetragonal Li atoms (two electron-deficient Li-C bonds and two Li-N coordination bonds). The absence of PPh₃ in the reaction product III is in line with the view that monovalent gold has a preference for linear two-coordination [5].

Compounds of type III, apart from being useful starting materials for the synthesis of uncomplexed $(RAu)_n$ species [6], are readily converted into other polynuclear mixed metal species. An example is the isolation of bis {2-[(dimethylamino)methyl]phenyl}goldcopper (IV) from the reaction of CuBr with $R_4Au_2Li_2$ (route 3)***.

Ochre IV (dec. at 137-139°) is revealed by ebulliometry to be dimeric in benzene, suggesting a structure consisting of a tetranuclear AuCu core with 2e-3c bonded aryl groups identical to that established for tetranuclear 2-[(dimethylamino)-methyl]phenylcopper [8]. The 'H NMR spectrum of IV is temperature-dependent [in C_6D_6 : broad signals at 25°C; at 80°C: 2.04 (s, sharp, NCH₃), 3.28 (s, broad, NCH₂), 8.0 ppm (d, broad, J 7 Hz, H₆]. This can be explained by the presence in solution of species of the type $R_4Cu_4-_nAu_n$ (the overall stoichiometry $R_4Au_2Cu_2$ is confirmed by the analytical results) which undergo slow interaggregate exchange. A similar interaggregate exchange has been observed upon dissolving $R_4Ag_6-_nCu_nBr_2$ ($r_2=2$ or 4) in benzene [9].

Thanks are due to Mr. C.A. Schaap for able experimental assistance.

References

- 1 A. Tamakı and J.K. Kochi, J. Chem. Soc., Dalton Trans., (1973) 2620.
- 2 G. van Koten and J.G. Noltes, J. Chem. Soc., Chem. Commun., (1972) 940.
- 3 A.J. Leusink, G. van Koten, J.W. Marsman and J.G. Noltes, J. Organometal. Chem., 55 (1973) 419.

^{*}Each aryl group is bonded via carbon (C(1)) to one M (Cu or Ag) atom and to one Li atom, E.g., $R_4Ag_2Li_2$ [3] $J(^{13}C(1)-Li)$ 7.2 \pm 0.2 and $J(^{13}C(1)-^{107}Ag)$ 118.3 \pm 0.8, $J(^{13}C(1)-^{109}Ag)$ 136.0 \pm 0.8 Hz. Bridging phenyl groups are proposed to occur in recently isolated triphenyl global [4].

[&]quot;The low intensity ¹³C resonance at 174.4 ppm (in C_6D_c) is assigned to C(1) (bridging carbon atom). Since the signal is somewhat broadened the multiplicity could not be established. Only one ¹H resonance pattern is observed for all aromatic protons (8.52 ppm, d of d, J 7 Hz, H_c). The CH₂ protons appear at room temperature as an AB pattern (2.40 and 4.30 ppm; $J \approx 12$ Hz; coalescence at about 80°).

Reaction of RAu PPh, [6] with R4Cu4 [7] (route 4) does not occur.

- 4 P.W.J. de Graaf, J. Boersma and G.J.M. van der Kerk, J. Organometal. Chem., 78 (1974) C19.
- 5 F.A. Cotton and G. Wilkinson, Advanced Inorganic Chemistry, 3rd ed., Interscience, London, 1972, p.1053.
- 6 G. van Koten and J.G. Noltes, J. Organometal. Chem., 80 (1974) C56.
- 7 G. van Koten, A.J. Leusink and J.G. Noltes, Chem. Commun., (1970) 1107.
- 8 G. van Koten and J.G. Noltes, J. Organometal. Chem., 84 (1975) 129.
- 9 A.J. Leusink, G. van Koten and J.G. Noltes, J. Organometal. Chem., 56 (1973) 379.